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Abstract— An automaton is a simple model of computer. 
There are various automata each with its formal 
definition. Generally an automaton has some form of 
input, some form of output, internal states may or may 
not have some from of storage, hardwired not 
programmable. In this paper we have discussed about   
Quantum Pushdown Automata, Turing Machine and 
Quantum Turing Machine and compared the power 
among these and by taking some interesting examples. 
Our main objective is to study about these three 
machines. 
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I. INTRODUCTION 

QUANTUM is a discrete quantity of energy 
proportional in magnitude to the frequency of radiation 
it represents. Also it can be defined as an analogous 
discrete amount of any other physical quantity such as 
momentum or electric charge. 

Quantum computer is a device for computation that 
makes direct use of quantum mechanical phenomena, 
such as superposition and entanglement, to perform 
operations on data. Quantum computers are different 
from traditional computers based on transistors. The 
basic principle behind quantum computation is that 
quantum properties can be used to represent data and 
perform operations on these data. A theoretical model 
is the quantum Turing machine, also known as the 
universal quantum computer. Here, we share 
theoretical similarities with non-deterministic and 
probabilistic computers, like the ability to be in more 
than one state simultaneously.  

A quantum computer with a given number of qubits 
is fundamentally different than a classical computer 
composed of the same number of classical bits. For 
example, to represent the state of an n-qubit system on 
a classical computer would require the storage of 2n 
complex coefficients. Although this fact may seem to 
indicate that qubits can hold exponentially more 
information than their classical counterparts, care must 
be taken not to overlook the fact that the qubits are 
only in a probabilistic superposition of all of their 
states. This means that when the final states of the 

qubits are measured, they will only be found in one of 
the possible configurations they were in before 
measurement. Moreover, it is incorrect to think of the 
qubits as only being in one particular state before 
measurement since the fact that they were in a 
superposition of states before the measurement was 
made directly affects the possible outcomes of the 
computation. 

Here our objective is to solve some problems of 
language recognition using QPDA, TM and QTM and 
compare their time complexity and output. 

II. WHAT IS A QUANTUM BIT (QUBIT)? 

Qubit is a unit of quantum information. Qubit 
represents both the state memory and the state of 
entanglement in a system. As a bit is the basic unit of 
information in classical computer, a qubit is the basic 
unit of information in quantum computer. In a quantum 
computer a number of elemental particles, such as 
electrons or photons can be used with either their 
charge or polarization acting as representation of ‘0’ or 
‘1’. This particle is known as a qubit. The pure qubit 
state is a linear superposition of basis state i.e. the qubit 
can be represented as combination of |0> and |1>. 

III. QUANTUM PUSHDOWN AUTOMATA 

Quantum Pushdown Automata contains seven tuples. 
A = (Q, Σ, q0, Qacc, Qrej, δ) 

Where 
Q: A finite of state, like the states of a finite 
automaton.  
Σ: A finite of input symbols, also analogous to the 
corresponding component of a finite automaton.  
Δ=T U {Z0} is the working set alphabet of A and  
Z0  T is the stack base symbol  
{↓, →} = is the set of direction of input tape head.   

The automaton must satisfy condition of well-
formedness   which will be expressed below. Further 
more the transition function is restricted to further 
requirement. 
 If δ (q, α, β, q’, d, ω) ≠ 0, then  

1. | ω|<=2;  
2. If |ω| =2, then ω1=β;  
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3. If β=Z0, then ω  (Z0T)*; 4. If β ≠ Z0, then ω  
T*. 

Ѓ: A finite stack alphabet. This component, which has 
no finite automaton analog, is the set of symbols that 
we are allowed to push onto the stack. δ:  Q × Γ × Δ  
×Q×{↓,→} × Δ* →  [0,1];    Where    Γ= Σ U { # , $} 
is the tape alphabet  of A #, $=end markers not in the 
Γ. We have solved some examples in QPDA which are 
given below: 
 
Example 1: Let us consider a language L= {anbn| 
n>=0} Q = (q0; q1; q2; q3; q4), Qacc = {q4}, Qrej = 
{q2}, Σ= {a; b}; T = {a; b}.Here we have taken the 
following assumption: 
1. D(q0)=→     D(q1)=↓   D(q2)=↓      D(q3)=→     
D(q4)=↓ 
If D=’→’ moves the input tape head one cell forward.  
If D=’↓’ then the input tape head remain in the current 
state. 

 
Fig. 1 Representation of L= {anbn| n>=0} 

 
The transition states of the following problem are 
mentioned below: 
δ (q0,a,Z) = (q0,1Z);δ (q0,a,1) = (q0,11);δ (q0,b,Z) = 
(q2,Z);δ (q0,$,Z) =( q4,z);δ (q0,b,1) = (q1, );  δ (q0,$,1) 
= (q2,1);δ (q1,b,z)=( q3,z);δ (q1,b,1)=( q3,1);(q1,$,z)=( 
q3,1);δ (q1,a,z)=( q2,z);δ (q1,$,1)=( q2,1);δ (q1,1,1)=( 
q2,1);δ (q2,$,1)=( q2,1);δ (q2,$,z)=( q2,z);δ (q2,a,1)=( 
q2,1);δ (q2,b,1)=( q2,1);δ (q2,a,z)=( q2,z);δ (q2,b,z)=( 
q2,z);δ (q3,$,1)=( q4,1);δ (q3,$,Z)=( q4,Z);δ (q3,$,1)=( 
q2,1);δ (q3,a,Z)=( q2,Z);δ (q3,a,1)=( q2,Z);δ (q3,b,1)=( 
q1,); 
 
Example 2:     L= {w Є (a, b)*│ |w | a = |w | b} 

 
Fig 2: Representation of L={w Є (a, b)*│ |w| a = |w | b} 

 
 
Q = (q0; q1; q2; q3), Qacc = {q2}; 
Qrej = {q3}; 
Σ= {a; b};  
T = {0; 1} 
δ (q0, a, Z) = (q0, Z1); 
δ (q0,a,1) = (q0,11); 
δ (q0,b,Z) = (q0,Z2);  
δ (q0,b,2) = (q0,22);  
δ (q0,$,Z) = (q0,Z1);  
δ (q0,a,2) = (q1,�);  
δ (q0,$,1) = (q3 ,1);  
δ (q0,$,2) = (q0,2); δ (q1,a,Z) = (q0,Z); δ (q1,b,Z) = 
(q0,Z); δ (q1,b,1) = (q0,1); δ (q1,a,2) = (q0,2);δ (q1,$,Z) 
= (q2,Z); δ (q1,a,1) = (q3,12); δ (q1,b,2) = (q3,21);δ 
(q2,$,1) = (q0,1); δ (q2,$,2) = (q0,2); δ (q2,$,Z) = (q0,Z);
 δ (q2,a,2) = (q0,21); δ (q2,b,1) = (q0,12); δ (q2,a,Z) 
= (q3,Z2); δ (q2,b,Z) = (q3,Z1);δ (q2,a,1) = (q2,�);δ 
(q2,b,2) = (q2, �); δ (q3,$,1) = (q2,1); δ (q3,$,2) = (q2,2);
 δ (q3,a,2) = (q3,1); δ (q3,b,1) = (q3,11); δ (q3,a,1) = 
(q3,22); δ (q3,b,2) = (q3,2); δ (q3,a,z) = (q3,z);δ (q3,b,z) 
= (q3,z); 
Here we have taken the directions as follows. 
1.    D (q0) =→ 
2.    D (q1) =↓ 
3.    D (q2) =↓ 
4.    D (q3) =↓ 
 

IV. TURING MACHINE 

Turing Machine was developed by Alan Turing in 
1930. A  Turing Machine has a finite state controller, a 
tape that it can read and write. 

i. the tape is unbounded to right 
ii. the tape initially holds the input string 
iii. the tape beyond the input string is initially 

filled with an infinite string of blank 
The finite state controller has two special states 
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qaccept :if the machine ever reaches the state ,it halts and        
accept the state 

qreject: If the machine ever reaches this state, it halts and 
rejects the string. 
 If M is a Turing Machine, then the language 
recognized by M is written L(M) 
and is the set of all strings for which the TM reaches 
the qaccept state. 
 
Turing Machine  reads the symbol at its current 
position   on the tape. 

i.  Based on that symbol and it current state, the 
machine: 
ii. Writes a symbol at the current position; 
iii. Transitions to a new state; and 
iv.  Moves one square to the left or right. 

 
A Turing machine is a 7-tuple (Q, ∑,Γ,q0, qaccept ,qreject) 
where 
 Q is a finite set, the states. 
∑ is a finite set, the input alphabet. 
Γ � ∑ is a finite set, the tape alphabet. 
 δ : (Q × Γ) → (Q × Γ × {L,R}) is the transition 
function. 
 Q0 � Q is the initial state. 
 qaccept � Q is the accepting state. 
 qreject � Q is the rejecting state. 
 
Let us take a language to check the acceptance and 
time taken by a Turing machine which is given in 
Figure-3.  

L= {
nnn cba | n>=1}     (1) 

Input alphabet: _ = {a, b, c}. 
States: Q = {q0, q1, q2, q3, q4, qaccept , qreject }. 
 Tape alphabet: = {a, b, c, A, B, C, $}. 
 Transitions: 
q0 : 
 (q0, a) → (q1, A, right), (q0,$) → (qaccept ,$, right), 
(q0, B) → (q0, R, right), (q0, C) → (q0, R, right),(q0, 
other) → (qreject , R, right). 
q1 : 
 (q1, a) → (q1, R, right), (q1, B) → (q1, R, right), (q1, 
b) → (q2, B, right) 
(q1, other) → (qreject , R, right). 
q2 : 
 (q2, b) → (q2, R, right), (q2, c) → (q2, R, right)  (q2, 
c) → (q3, C, left)(q2, other) → (qreject , R, right) 
q3 : 
 (q3, $ − {A} → (q3, R, left) (q3, A) → (q0, R, right). 

 

Figure-3: TM for L 
 

An algorithm which is designed to accept L is given by 
the following Pseudo-code. 
 
state = q[0]; 
while(TRUE) 
do 
 switch(state)  
 do 
  case q[0]: 
   switch(Current Read Symbol) 
   do 
    case a: 
     write(a);  

state=q[1]; 
movement(RIGHT); 
break; 

    case b: 
     write(b);  

state=q[0]; 
movement(RIGHT); 
break; 

    case $: 
     write($); 

state=q(reject); 
movement(right); 
break;        

   end 
   break; 
  case q[1]: 
   /* switch case operations */ 
  case q[2]: 
   /* switch case operations */ 
  case q(accept): 
   accept();  
  case q(reject): 
   reject();  
 end 
end 
 
A data showing value of n and time taken by the 
algorithm to recognize the language is given below in 
Table-1. 
 
TABLE-1 ACCEPTANCE TIME 

nnn cba     Time Taken 
   (Input n)            (sec) 

1      0.000000 
10      0.000142 
50      0.301357 
100     3.589010 
150     10.670100 
200     23.010067 
400     60.090127 
500     89.107601 

 
We see that when n is increasing, the complexity of the 
machine becomes more and it takes much more time to 
recognize the language. When n is 500 it takes about 
90 sec. recognize in a Dual Core processor with 2GB 
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RAM. It becomes impossible by the machine to accept 
the same language with n=10000, 20000 and more. A 
plot has been given in Figure-4 to see how the time 
changes with n. 
 

 
Figure-4: Plot n Vs. Time 

 

V. QUANTUM TURING MACHINE 

A quantum Turing machine (QTM) is an abstract 
machine used to model the effect of a quantum 
computer. It provides a very simple model which 
captures all of the power of quantum computation. Any 
quantum algorithm can be expressed formally as a 
particular quantum Turing machine.  
  
Normal Turing machine can only perform one 
calculation at a time whereas a QTM can perform 
multiple calculations at a time. Normal computer 
works by manipulating bits in which there exists two 
states (0 or 1), but Quantum Computers are not limited 
to two states. They encode information as Quantum 
Bits (Qubit) which exist in superposition. Qubits 
represent atoms, ions, photons, electrons. 
 
A Quantum Turing Machine (QTM) is a 7-tuples  

 

M= (Q, ∑, Γ, U, 0q  B, F) 

 Where, 
Q is a Finite number of states.  
Γ is tape symbols.      
∑     is an input symbol. 
B � Γ is a blank symbol. 
δ is a state transition  function and is a q mapping 
from Q  ×  Γ   ×  Γ   ×  Q  ×   {L,R} to  C. 
q 0 � Q   is a initial state. 
F  Q is a set of final states 

  
If we run the same program which is given by (1), it 
may take lesser time as compared to the traditional 
Turing machine. 
 

VI. CONCLUSION AND FUTURE WORKS 

In this research work, we studied the three types of 
language recognizers i.e. Quantum Pushdown 
Automata, Turing Machine, Quantum Turing Machine 
and worked out some examples by showing 
performance of Turing Machine. 
  As our Future work, we will be working on 
Quantum Turing Machine to see the performance of it 
by taking more complex languages. 
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