
 0

A Comparative Study on Quantum Pushdown
Automata, Turing Machine and Quantum

Turing Machine
TANISTHA NAYAK1, TIRTHARAJ DASH2
National Institute of Science and Technology

Berhampur, India

Abstract— An automaton is a simple model of computer.
There are various automata each with its formal
definition. Generally an automaton has some form of
input, some form of output, internal states may or may
not have some from of storage, hardwired not
programmable. In this paper we have discussed about
Quantum Pushdown Automata, Turing Machine and
Quantum Turing Machine and compared the power
among these and by taking some interesting examples.
Our main objective is to study about these three
machines.

Keywords—Quantum Pushdown Automata (QPDA),
Quantum Turing Machine(QTM), Turing Machine (TM),
Quantum computer, Quantum bit (Qubit).

I. INTRODUCTION

QUANTUM is a discrete quantity of energy
proportional in magnitude to the frequency of radiation
it represents. Also it can be defined as an analogous
discrete amount of any other physical quantity such as
momentum or electric charge.

Quantum computer is a device for computation that
makes direct use of quantum mechanical phenomena,
such as superposition and entanglement, to perform
operations on data. Quantum computers are different
from traditional computers based on transistors. The
basic principle behind quantum computation is that
quantum properties can be used to represent data and
perform operations on these data. A theoretical model
is the quantum Turing machine, also known as the
universal quantum computer. Here, we share
theoretical similarities with non-deterministic and
probabilistic computers, like the ability to be in more
than one state simultaneously.

A quantum computer with a given number of qubits
is fundamentally different than a classical computer
composed of the same number of classical bits. For
example, to represent the state of an n-qubit system on
a classical computer would require the storage of 2n
complex coefficients. Although this fact may seem to
indicate that qubits can hold exponentially more
information than their classical counterparts, care must
be taken not to overlook the fact that the qubits are
only in a probabilistic superposition of all of their
states. This means that when the final states of the

qubits are measured, they will only be found in one of
the possible configurations they were in before
measurement. Moreover, it is incorrect to think of the
qubits as only being in one particular state before
measurement since the fact that they were in a
superposition of states before the measurement was
made directly affects the possible outcomes of the
computation.

Here our objective is to solve some problems of
language recognition using QPDA, TM and QTM and
compare their time complexity and output.

II. WHAT IS A QUANTUM BIT (QUBIT)?

Qubit is a unit of quantum information. Qubit
represents both the state memory and the state of
entanglement in a system. As a bit is the basic unit of
information in classical computer, a qubit is the basic
unit of information in quantum computer. In a quantum
computer a number of elemental particles, such as
electrons or photons can be used with either their
charge or polarization acting as representation of ‘0’ or
‘1’. This particle is known as a qubit. The pure qubit
state is a linear superposition of basis state i.e. the qubit
can be represented as combination of |0> and |1>.

III. QUANTUM PUSHDOWN AUTOMATA

Quantum Pushdown Automata contains seven tuples.
A = (Q, Σ, q0, Qacc, Qrej, δ)

Where
Q: A finite of state, like the states of a finite
automaton.
Σ: A finite of input symbols, also analogous to the
corresponding component of a finite automaton.
Δ=T U {Z0} is the working set alphabet of A and
Z0  T is the stack base symbol
{↓, →} = is the set of direction of input tape head.

The automaton must satisfy condition of well-
formedness which will be expressed below. Further
more the transition function is restricted to further
requirement.
 If δ (q, α, β, q’, d, ω) ≠ 0, then

1. | ω|<=2;
2. If |ω| =2, then ω1=β;

Tanistha Nayak et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 2932 - 2935

2932

 2

3. If β=Z0, then ω  (Z0T)*; 4. If β ≠ Z0, then ω 
T*.

Ѓ: A finite stack alphabet. This component, which has
no finite automaton analog, is the set of symbols that
we are allowed to push onto the stack. δ: Q × Γ × Δ
×Q×{↓,→} × Δ* →  [0,1]; Where Γ= Σ U { # , $}
is the tape alphabet of A #, $=end markers not in the
Γ. We have solved some examples in QPDA which are
given below:

Example 1: Let us consider a language L= {anbn|
n>=0} Q = (q0; q1; q2; q3; q4), Qacc = {q4}, Qrej =
{q2}, Σ= {a; b}; T = {a; b}.Here we have taken the
following assumption:
1. D(q0)=→ D(q1)=↓ D(q2)=↓ D(q3)=→
D(q4)=↓
If D=’→’ moves the input tape head one cell forward.
If D=’↓’ then the input tape head remain in the current
state.

Fig. 1 Representation of L= {anbn| n>=0}

The transition states of the following problem are
mentioned below:
δ (q0,a,Z) = (q0,1Z);δ (q0,a,1) = (q0,11);δ (q0,b,Z) =
(q2,Z);δ (q0,$,Z) =(q4,z);δ (q0,b,1) = (q1, ); δ (q0,$,1)
= (q2,1);δ (q1,b,z)=(q3,z);δ (q1,b,1)=(q3,1);(q1,$,z)=(
q3,1);δ (q1,a,z)=(q2,z);δ (q1,$,1)=(q2,1);δ (q1,1,1)=(
q2,1);δ (q2,$,1)=(q2,1);δ (q2,$,z)=(q2,z);δ (q2,a,1)=(
q2,1);δ (q2,b,1)=(q2,1);δ (q2,a,z)=(q2,z);δ (q2,b,z)=(
q2,z);δ (q3,$,1)=(q4,1);δ (q3,$,Z)=(q4,Z);δ (q3,$,1)=(
q2,1);δ (q3,a,Z)=(q2,Z);δ (q3,a,1)=(q2,Z);δ (q3,b,1)=(
q1,);

Example 2: L= {w Є (a, b)*│ |w | a = |w | b}

Fig 2: Representation of L={w Є (a, b)*│ |w| a = |w | b}

Q = (q0; q1; q2; q3), Qacc = {q2};
Qrej = {q3};
Σ= {a; b};
T = {0; 1}
δ (q0, a, Z) = (q0, Z1);
δ (q0,a,1) = (q0,11);
δ (q0,b,Z) = (q0,Z2);
δ (q0,b,2) = (q0,22);
δ (q0,$,Z) = (q0,Z1);
δ (q0,a,2) = (q1,�);
δ (q0,$,1) = (q3 ,1);
δ (q0,$,2) = (q0,2); δ (q1,a,Z) = (q0,Z); δ (q1,b,Z) =
(q0,Z); δ (q1,b,1) = (q0,1); δ (q1,a,2) = (q0,2);δ (q1,$,Z)
= (q2,Z); δ (q1,a,1) = (q3,12); δ (q1,b,2) = (q3,21);δ
(q2,$,1) = (q0,1); δ (q2,$,2) = (q0,2); δ (q2,$,Z) = (q0,Z);
 δ (q2,a,2) = (q0,21); δ (q2,b,1) = (q0,12); δ (q2,a,Z)
= (q3,Z2); δ (q2,b,Z) = (q3,Z1);δ (q2,a,1) = (q2,�);δ
(q2,b,2) = (q2, �); δ (q3,$,1) = (q2,1); δ (q3,$,2) = (q2,2);
 δ (q3,a,2) = (q3,1); δ (q3,b,1) = (q3,11); δ (q3,a,1) =
(q3,22); δ (q3,b,2) = (q3,2); δ (q3,a,z) = (q3,z);δ (q3,b,z)
= (q3,z);
Here we have taken the directions as follows.
1. D (q0) =→
2. D (q1) =↓
3. D (q2) =↓
4. D (q3) =↓

IV. TURING MACHINE

Turing Machine was developed by Alan Turing in
1930. A Turing Machine has a finite state controller, a
tape that it can read and write.

i. the tape is unbounded to right
ii. the tape initially holds the input string
iii. the tape beyond the input string is initially

filled with an infinite string of blank
The finite state controller has two special states

Tanistha Nayak et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 2932 - 2935

2933

 3

qaccept :if the machine ever reaches the state ,it halts and
accept the state

qreject: If the machine ever reaches this state, it halts and
rejects the string.
 If M is a Turing Machine, then the language
recognized by M is written L(M)
and is the set of all strings for which the TM reaches
the qaccept state.

Turing Machine reads the symbol at its current
position on the tape.

i. Based on that symbol and it current state, the
machine:
ii. Writes a symbol at the current position;
iii. Transitions to a new state; and
iv. Moves one square to the left or right.

A Turing machine is a 7-tuple (Q, ∑,Γ,q0, qaccept ,qreject)
where
 Q is a finite set, the states.
∑ is a finite set, the input alphabet.
Γ � ∑ is a finite set, the tape alphabet.
 δ : (Q × Γ) → (Q × Γ × {L,R}) is the transition
function.
 Q0 � Q is the initial state.
 qaccept � Q is the accepting state.
 qreject � Q is the rejecting state.

Let us take a language to check the acceptance and
time taken by a Turing machine which is given in
Figure-3.

L= {
nnn cba | n>=1} (1)

Input alphabet: _ = {a, b, c}.
States: Q = {q0, q1, q2, q3, q4, qaccept , qreject }.
 Tape alphabet: = {a, b, c, A, B, C, $}.
 Transitions:
q0 :
 (q0, a) → (q1, A, right), (q0,$) → (qaccept ,$, right),
(q0, B) → (q0, R, right), (q0, C) → (q0, R, right),(q0,
other) → (qreject , R, right).
q1 :
 (q1, a) → (q1, R, right), (q1, B) → (q1, R, right), (q1,
b) → (q2, B, right)
(q1, other) → (qreject , R, right).
q2 :
 (q2, b) → (q2, R, right), (q2, c) → (q2, R, right) (q2,
c) → (q3, C, left)(q2, other) → (qreject , R, right)
q3 :
 (q3, $ − {A} → (q3, R, left) (q3, A) → (q0, R, right).

Figure-3: TM for L

An algorithm which is designed to accept L is given by
the following Pseudo-code.

state = q[0];
while(TRUE)
do
 switch(state)
 do
 case q[0]:
 switch(Current Read Symbol)
 do
 case a:
 write(a);

state=q[1];
movement(RIGHT);
break;

 case b:
 write(b);

state=q[0];
movement(RIGHT);
break;

 case $:
 write($);

state=q(reject);
movement(right);
break;

 end
 break;
 case q[1]:
 /* switch case operations */
 case q[2]:
 /* switch case operations */
 case q(accept):
 accept();
 case q(reject):
 reject();
 end
end

A data showing value of n and time taken by the
algorithm to recognize the language is given below in
Table-1.

TABLE-1 ACCEPTANCE TIME

nnn cba Time Taken
 (Input n) (sec)

1 0.000000
10 0.000142
50 0.301357
100 3.589010
150 10.670100
200 23.010067
400 60.090127
500 89.107601

We see that when n is increasing, the complexity of the
machine becomes more and it takes much more time to
recognize the language. When n is 500 it takes about
90 sec. recognize in a Dual Core processor with 2GB

Tanistha Nayak et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 2932 - 2935

2934

 4

RAM. It becomes impossible by the machine to accept
the same language with n=10000, 20000 and more. A
plot has been given in Figure-4 to see how the time
changes with n.

Figure-4: Plot n Vs. Time

V. QUANTUM TURING MACHINE

A quantum Turing machine (QTM) is an abstract
machine used to model the effect of a quantum
computer. It provides a very simple model which
captures all of the power of quantum computation. Any
quantum algorithm can be expressed formally as a
particular quantum Turing machine.

Normal Turing machine can only perform one
calculation at a time whereas a QTM can perform
multiple calculations at a time. Normal computer
works by manipulating bits in which there exists two
states (0 or 1), but Quantum Computers are not limited
to two states. They encode information as Quantum
Bits (Qubit) which exist in superposition. Qubits
represent atoms, ions, photons, electrons.

A Quantum Turing Machine (QTM) is a 7-tuples

M= (Q, ∑, Γ, U, 0q B, F)

 Where,
Q is a Finite number of states.
Γ is tape symbols.
∑  is an input symbol.
B � Γ is a blank symbol.
δ is a state transition function and is a q mapping
from Q × Γ × Γ × Q × {L,R} to C.
q 0 � Q is a initial state.
F Q is a set of final states

If we run the same program which is given by (1), it
may take lesser time as compared to the traditional
Turing machine.

VI. CONCLUSION AND FUTURE WORKS

In this research work, we studied the three types of
language recognizers i.e. Quantum Pushdown
Automata, Turing Machine, Quantum Turing Machine
and worked out some examples by showing
performance of Turing Machine.
 As our Future work, we will be working on
Quantum Turing Machine to see the performance of it
by taking more complex languages.

REFERENCES
[1] C. Moore, J.P. Crutchfield, Quantum automata and quantum

grammars, Theoret. Comput. Sci. 237 (1–2) (2000) 275–306.
[2] A. Kondacs, J.H.Watrous, On the power of quantum finite state

automata, in: 38th Annual Symp. Foundations of Computer
Science, 1997, pp. 66–75.

[3] A. Ambainis, J.H. Watrous, Two-way finite automata with
quantum and classical states, Theoret. Comput. Sci. 287 (1)
(2002) 299–311.

[4] A. Ambainis, R. Freivalds, 1-way quantum finite automata:
strengths, weaknesses and generalizations, in: 39th Annual
Symp. Foundations of Computer Science, 1998, pp. 332–341.

[5] T.Yamasaki, H.Kobayashi, H.Imai, “Quantum versus
deterministic counter automata”, Theoret. Comput. Sci. 344 (1)
(2005) 275–297.

[6] M. Golovkins, On Quantum Pushdown Automata, School of
computing, LNCS, 2000, vol. 1963, pp. 336-346

[7] D. Qiu, P. Mateus, X. Zou, A .Sernadas, One-way quantum
finite automata together with classical states: Equivalence and
minimization of Computer Science.

[8] M. Nielsen and I. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[9] A. Kitaev, A. Shen, and M. Vyalyi. Classical and Quantum
Computation, volume 47 of Graduate Studies in Mathematics.
American Mathematical Society, 2002.

[10] A. Ambainis, R. Bonner, R. Freivalds, A. K¸ ikusts:
Probabilities to Accept Languages by Quantum Finite Automata.
Lecture Notes in Computer Science, 1999, Vol. 1627, pp. 174-
183.

[11] A. R. Calderbank, E. M. Rains, P. W. Shor, N. J. A. Sloane:
Quantum error correction via codes over GF(4). IEEE
Transactions on Information Theory, 1998, vol. 44, p. 1369-
1387.

[12] Deutsch, David (July 1985). "Quantum theory, the Church-
Turing principle and the universal quantum computer".
Proceedings of the Royal Society of London; Series A,
Mathematical and Physical Sciences 400 (1818): pp. 97–117.

[13] Bonsor, Kevin, and Jonathan Strickland. "How Quantum
Computers Work" 08 December 2000. HowStuffWorks.com.
<http://computer.howstuffworks.com/quantum-computer.htm>
05 January 2012.

Tanistha Nayak et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 2932 - 2935

2935

